
Microsoft® Office 97
White Paper
Published: October 1996 For the latest information, see http://www.microsoft.com/office/

Microsoft Component Strategy
The use of component software and the promised benefits they will provide end
users and developers is one of the hottest topics in the software industry today.
However, discussing a company’s component strategy is complicated by the
multitude of definitions of what components are. To date, components have been
defined and discussed by industry publications, developers and customers in a
number of ways, including the following:

· Microsoft Foundation Classes (MFC) libraries and custom dynamic-link
libraries (DLLs) that provide prewritten code used to build applications

· Controls used by developers to build applications (e.g., WordArt is a
component of Word)

· Specific-purpose “plug-in” pieces of code that work within a browser (e.g., a
Java Applet that calculates a user’s interest rate on a car loan)

· Documents that can plug into a container, such as a Microsoft® Excel
spreadsheet within the Office Binder

· “Light” developer versions of applications that could be used in the context
of a container such as Lotus Notes®.

1
A Consistent Definition
As you can see, there are numerous kinds of components, but fundamentally
all are reusable pieces of code that accomplish a focused task. And, in the
most popular usage, the components must work within the context of a
container. These components range from those that are very well integrated
within an application, such as the Office DLL, to those that are less integrated
but more “pluggable” within applications, such as OLE servers. The following
figure shows how some different types of components might fall along this
spectrum.

2 Microsoft Office 97

3 Microsoft Office 97

Microsoft Approach
Office applications use a number of components across this spectrum. Not
only is Office built with integrated components such as an Office DLL or OLE
servers (e.g., the shared spelling and grammar checker), but Office also acts
as a container for pluggable components such as ActiveX™ Controls.
Microsoft’s component strategy is as follows:

· To develop Office using a number of components while maintaining a high
level of consistency and integration throughout the products

· To distribute Office as a set of consistent, well-integrated tools for the end
user rather than as a number of loosely integrated pieces

· To provide flexible options that allow users and IS managers to determine
which components of Office reside on a user’s desktop and which reside
on the server

· To provide for customization of Office by enabling Microsoft and third-party
components to plug into Office documents or solutions using Visual
Basic for Applications®

· To allow Office documents to act as components themselves within the
Microsoft Internet Explorer container

2
This document is designed to guide you through Microsoft’s approach to
building with components, distributing Office as a set of integrated tools, and
providing an open forum for third party and Microsoft plug-ins.

Building Office with Components
Microsoft has been using components to develop applications for some time.
File Open, WordArt, Equation Editor and Mapping are all examples of this
strategy. In fact, over 50 percent of Office 97 has been built using either
components or shared code.

For example, Office has a variety of reusable components, functions and DLLs
that are used by programmers within Microsoft but are not necessarily
documented or available to outside programmers. In addition to these
integrated, proprietary pieces, Office uses components that are more
pluggable, such as the spelling and grammar checker and Office Art, to build
applications. This strategy not only supplies Office users with consistent
functionality across products, it also speeds application development.

Web FindFast
Binder
ClipArt Gallery
Graphics Filters
Converters (HTML)
Setup/Admin
Chart/Graph
Query
File Management
ODMA

Office Runtime
AutoCorrect
OLE Props, Notes/FX
Command Bars
Answer Wizard
Office Art
Data Access Objects
VBA
Hyperlinks
Grammar

NEW

BETTER

BETTER

BETTER

BETTER

BETTER

BETTER

BETTER

BETTER

NEW

Selected Office 97 Components
nentsComComponents

BETTER

BETTER

BETTER

NEW

NEW

NEW

BETTER

NEW

NEW

BETTER

4 Microsoft Office 97

Although building with components provides consistency for users and faster
development schedules, there are certain trade-offs. For example, speed of
task execution might sometimes be sacrificed due to the overhead involved
when a component must communicate with the container. In addition,
components designed to work with multiple containers run the risk of being too
generic to be useful. Microsoft developers weigh these trade-offs and decide
whether using components or native code is the most appropriate, ensuring
that speed of development does not supersede execution speed or usability.

In summary, components are integrated within Office applications when they
help meet user needs for powerful, consistent, easy-to-use software.

The key here is that components are a means to an end and not an end in
themselves — it is irrelevant to the user whether the functionality is built with a
component or is native code. Users simply want the functionality and the ability
to work efficiently.

Distributing Office as an Integrated Suite of
Applications

Although Microsoft develops Office using a mix of components and integrated
code, it will continue to distribute this collection as an integrated suite of
applications. This decision is based on requests from customers for a single
set of easy-to-deploy, integrated applications. IS managers have indicated that
purchasing, deploying and managing numerous inconsistent applications on
users’ desktops would be exceedingly difficult and complex.

Although there has been much industry discussion about whether a collection
of applets could replace the need for a suite of business productivity tools,
today’s components offer little functionality compared to the full Office suite.
This limited functionality would make it difficult for users engaged in document
creation to complete their jobs. In addition, the applets would need to evolve to
provide the richness of functionality Office already has today, including support
for the following customer priorities:

· Integration. Users and IS managers continually cite integration as one of
the key reasons for using a suite. Customers want their applications to
look and act alike, and this is best accomplished with an integrated
development strategy. Using multiple components from multiple vendors
makes it harder to integrate and simplify application usage.

· Scalable features. Customers may not want all their tools all the time, but
they want access to them when needed. For example, 47 percent of
Microsoft customers (including even the least experienced users) do a
complete or custom install of Office rather than a typical install. In fact,
only 3 percent choose minimum install. Customers want tools to be
available when they need them, so they are willing to allocate the
necessary hard drive space for the added convenience.

· A unified development platform. Office provides a unified platform for
creating custom solutions. The consistency in the object model, the
programming interface and the easy-to-use development environment
has made Office one of the most popular development platforms, after
the Windows® operating system.

· Legacy file support. Many customers find it essential for Microsoft to
support their existing macros, solutions, archived documents, etc. In
fact, this was the No. 1 concern Microsoft found in a recent upgrading
customer study.

3

5 Microsoft Office 97

Although Office will not be distributed as a number of loosely integrated pieces,
Microsoft is working to provide maximum deployment, installation and
management flexibility for IS managers. Currently, administrators can
determine which parts of the applications to install on users’ machines,
providing unique feature sets to different populations of users. In addition, they
can make the appropriate trade-offs between network bandwidth and local
storage by specifying that part of an application will run on the desktop, while
the rest of the tools are run from a network server. For example, an
administrator can specify that 90 percent of Office run from the server.

In addition, Microsoft is working to find ways in future releases to load smaller
working sets onto a user’s machine. Already, Office 97 does a great deal to
load features “on demand” rather than loading them all at once. For example,
the first time you use a graph in a PowerPoint® presentation graphics program
session, you experience a slight delay because that code was not
unnecessarily loaded when the system was booted.

Today’s “packaged” components provide little functionality compared to Office.
Although they are generally about one-third to one-half the size (RAM + disk
footprint) of their corresponding applications, the spreadsheet or word
processing components cannot stand alone — they still need a container. For
components such as those in Lotus Notes, this creates a cost in both RAM and
disk space — in many cases, this cost can be substantially more than that in
Office.

Adding Components to the Office Container
Microsoft has also worked to ensure that Office can act as a container for
additional components to help users customize their office. Office documents
can now host ActiveX Controls. For example, the PowerPoint Animation
Publisher is a control that can be plugged into PowerPoint to allow users to
create multimedia presentations for the Web. In addition, a second Office
component — the PowerPoint Animation Player — can be plugged into
Netscape™ Navigator or Microsoft Internet Explorer to allow users without
PowerPoint to view the presentation. Microsoft will continue to produce new
components for Office and encourage third-party vendors to build Office
plug-ins as well.

In Summary
Developing Office with shared components ensures not only speed of
development, but true integration and consistency among the applications.
Distributing Office as an integrated suite with flexible installation options provides
for easier management and distribution on user desktops. Finally, allowing
components to plug into Office provides an easy way for administrators to further
customize Office for the needs of end users — providing them an easy-to-use
tool that meets their individual requirements.

#########
© 1996 Microsoft Corp. All rights reserved.
The information contained in this document represents the current view of Microsoft Corp. on the issues
discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should
not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of
any information presented after the date of publication.
This document is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR
IMPLIED, IN THIS DOCUMENT.
Microsoft, Visual Basic, Visual Basic for Applications, ActiveX, Windows, PowerPoint and the Office Compatible
logo are either registered trademarks or trademarks of Microsoft Corp. in the United States and/or other countries.
Lotus Notes is a registered trademark of Lotus Development Corp.
Netscape is a trademark of Netscape Communications Inc.

	Microsoft Component Strategy
	A Consistent Definition

	Microsoft Approach
	Building Office with Components
	Distributing Office as an Integrated Suite of Applications
	Adding Components to the Office Container
	In Summary

